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Abstract: In signal processing, high resolution sig-
nal parameter estimation is a significant problem. In
particular the estimation of the direction of the nar-
row band signals emitted by multiple sources received
wide applications recently in signal processing litera-
ture. Quite a number of papers appeared in the last
twenty five years regarding the estimation of the pa-
rameters of the direction of arrival of signals, but not
that much attention has been given in estimating the
number of signals. In this paper we develop a method
using penalty function technique. But instead of using
any fixed penalty function like AIC or MDL, a class
of penalty functions satisfying some special properties
have been used. We prove that any penalty function
from that particular class will produce consistent esti-
mates under the assumptions that the error random
variables are independent and identically distributed
with mean zero and finite variance. We also obtain
the probabilities of wrong detection for any particular
penalty function and estimate it using the matrix per-
turbation technique. It gives some idea to choose the
proper penalty function for any particular model. Sim-
ulations are performed to verify the usefulness of the
analysis and to compare our method with the existing
ones.

AMS Subject Classifications: 62H12, 62H15,
62F12

Keywords and Phrases: Almost sure convergence,
Information theoretic criteria, model selection, signal
detection.

Short Running Title: Detecting the number of sig-
nals.
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1. INTRODUCTION:

Detecting the number of signals and estimating the
parameters of the signals are important problems in sig-
nal processing. There has been a great deal of recent

interests in the use of signal subspace processing meth-
ods for the estimation of the direction of arrival (DOA)
of multiple plane waves or frequencies of sinusoids. See
for example, [1, 2, 7, 10, 11, 12, 14, 16, 23, 25, 28]. The
problem can be formulated as follows:

x(t) = As(t) + n(2); t=1,...,N, (L1)

where x(t) is a px 1 complex valued observation vector,
s(t) is the ¢ x 1 complex valued unobserved signal vector
and n(t) is a p x 1 complex valued noise vector at the
time point ¢. A = [ A(¢1)...A(¢,)] is a p X ¢ matrix,
where A (@) is the px 1 complex valued direction vector
of the k** wavefront and parameterized by an unknown
parameter vector ¢y, associated with the kth signal. We
assume that s(t) and n(t) are complex vectors which are
distributed independently with each other. The p x ¢
matrix A has the special structure

A= [al,...,aq]
and
ay = a(dy) = [1,e9w0%% . e~Iwo(p—1)¢u]T, (1.2)

where j = /=1, ¢y = C~*Asin(y), C = speed of prop-
agation, 0y is the direction of arrival of signal from the
k** source and A is the inter-source distance (see [17]).
It is always possible to take wp to be unity, without loss
of generality (see [17]). One of the important problem
is the estimation of g, the number of signals another is
the estimation of ¢1,...,¢,.

Estimating the parameters of the model (1.1) is a
very important problem in signal processing. This is the
situation in sensor array processing [5, 6, 10], in Har-
monic analysis [15], in retrieving the poles of a system
from natural response (Wax, Schmidt and Kailath; [24])
and also in retrieving overlapping echoes from radar
back scatter ([17]).

Estimation of ¢;,...,¢, assuming ¢ known is usu-
ally solved by some eigen decomposition method.
There are several eigen-decomposition methods avail-
able in the literature, for example MUSIC {3, 22], modi-
fied MUSIC [12], ESPRIT, TLS-ESPRIT ([20]), GEESE
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([17]), Bai and Rao method [1] , the modified Bai and
Rao method [14] or the method proposed by Kannan,
Kundu and Mitra [8]. - For detailed discussions of the
different eigen-decomposition methods the readers are
referred to the Ph.D. thesis of Kannan [7] or the re-
view article of Paulraj et al. [16]. MUSIC and modi-
fied MUSIC algorithms are obtained by minimizing the
Hermitian form of an exponential function. The solu-
tion is obtained by a search procedure which is itera-
tive in nature. The other decomposition methods like
ESPRIT, TLS-ESPRIT, GEESE, Kannan, Kundu and
Mitra method, Bai and Rao method or the modified
Bai and Rao method are all non iterative in nature. It
is observed that among several non iterative methods
centro symmetric modified Bai and Rao method works
very well.

The estimation of ¢ was attempted by many re-
searchers. Wax and Kailath [23] and Zhao, Krishnaiah
and Bai [28] study this problem from the parametric
point of view, where as Bhandari and Bansal [2] and
Yin and Krishnaiah [27] study this problem from the
Bayesian and non parametric point of view respectively.
Comparison and comments on the different methods
can be found in [11].

Estimation of the number of signals and the perfor-
mance analysis of a related model can be found in (19,
22, 9, 13]. In all the methods, i.e. in estimation and in
performance analysis computation, it is assumed that
the signal random variable s(t) and the noise random
variable n(t) are Gaussian random variables and it is
not very easy to relax this assumption.

The main aim of this paper is to provide a consis-
tent method of estimation of g of the model (1.1) and
carry out the performance analysis without assuming
that s(t) and n(t) are Gaussian random variables. We
assume the following

E(s(t)) = 0, EGs@®)st)f)=¥>0, (13)

E(n(t)) = 0, E(m(t)n(t)) = o1,

s(t) and n(t) are independent and (s(t), n(t)); for t =
1,...,N are independent and identically distributed
random variables. Here I is the identity matrix of or-
der p x p and ‘H’ denotes the conjugate transpose of
a matrix or a vector. In developing the procedure,
we use the information theoretic criteria. But not any
fixed penalty function has been used like AIC or MDL,
but a class of penalty functions satisfying some special
properties like EDC of [28] has been used. Unlike [28]
proving the strong consistency we don’t need any dis-
tributional assumption of s(t) or n(t). We carry out
the performance analysis of the proposed method using
the matrix perturbation technique and large sample ap-
proximation. We compute the probability of wrong de-
tection for large sample size for any particular penalty

function in that given class and that gives some idea
which penalty function should be used for any particu-
lar sample.

The organization of the rest of the paper is as fol-
lows. We develop the method in Section 2 and the
strong consistency results are provided in Section 3.
The performance analysis is carried out in Section 4
and some numerical results are reported in Section 5.
The choice of the penalty function is suggested in Sec-
tion 6. In Section 7 we address the problem if the error
is known to be Gaussian and finally we draw conclu-
sions from our work in Section 8.

2. SOME NOTATIONS AND ESTIMATION
PROCEDURE:

We use the following notations through out the pa-
per. Let R be the variance covariance matrix, i.e.

R = Ex(t)xt)?) = ATAY + 4’1  (2.1)

and R be the sample variance covariance matrix, i.e.
1 &
R — — H
R= i ;=1 x(t)x(t)”. (2.2)

Although R depends on N, for brevity we are not mak-
ing it explicit. We can write

R=R+(R-R). (2.3)

Here (R— R) denotes the perturbation of the matrix R
and clearly some norm of the perturbation matrix goes
to zero as N tends to infinity. Let’s denote the spectral
decomposition of the matrix R be as follows

r
R= Z,\(i)z,-Z{’, Ay > ... > Al) > Ag+1)
i=1
=-"='\(p) =0’2. (24)

Here A(;)’s are the eigenvalues and Z;’s are correspond-
ing orthonormal eigenvectors of R. Note that Ay),...,
A(p) denote the ordered eigenvalues of R. Let the cor-
responding spectral decomposition of R. be as follows:

r 4
R= 3 A2l

i=1

5\(1) >0 ;\(p), (2.5)

here :\(i) ’s are the eigen values and 7.’s are the cor-

responding orthonormal eigen vectors of R. Similarly
A(1)s--+»A(p) are the ordered eigen values of R. Con-
sider the following function

IC(k,CN) = Ages1) + kC; k=0,1,...p—1,

(2.6)




here, Cy satisfies the following conditions

(@) Cn>0 (B)Cn—=0 (o) %—m.
@.7)
Let

§ = arg min IC(k,Cn), for 0<k<p-1, (2.8)

then § is an estimator of q. Clearly § is a function of
N and Ch, but we are not making it explicit for nota-
tional convenience. In the next section we prove that
§ is a consistent estimator of g if (s(t), n(t)) satisfies
assumption (1.3) and C satisfies (2.7). In the subse-
quent section we suggest how to choose Cy .

3. CONSISTENCY RESULTS:

We need the following lemma for further develop-
ment.

Lemma 1: Let P = ((P;;)) and Q = ((Qi;)) be two
m x m Hermitian matrices with the following spectral
decompositions

m m
P= Zé,—uiu{{, Q= Z#ivivf,

i=1 i=1

(3.1)

where d; > ... 20 and 3 > ... > up
and {uy,...,un} and {vy...vy,} are the orthonormal
set of eigenvectors of P and Q respectively. If there
exists an a, such that |P;; — Qij| < a for all 4,5 =
1,...,m, then there exists a C such that |§; — ;| < Ca
foralli=1,...m.

Proof: The proof mainly follows from von Neumann
inequality but see also [1] for details.

By the law of iterated logarithm, we can say that
1
~ 2
R=R+0 (@) a.s., (3.2)

If we denote the non zero eigenvalues of AWAH as
Y1,-++1%q (order them as yq) > ... > 7(g)) then it is
immediate that

Ay = 7(i)+0'2 for i=1,...q

Al o? for i=q+1,...,p.
(9
(3.3)

Observe that to prove § is a strongly consistent estima-
tor of g, it is enough to prove that for large N,

IC(q,CN) - IC(k,CN) <0  as.  (34)

for k=0,1,...,9 1,9+ 1,...,p — 1. Consider two
different cases

Case 1: k < q,

IC(q,CN) — IC(k,CnN)
= A+ — A4y + (@ = E)Cn

loglogN 3
= A(q+1) b )‘(k+1) + (q - k)CN +0 ('——N_)

loglogN) 3

= —Yr+1) +(@—k)Cn + O ( N

(3.5)

Since the second and the third term of (3.5) go to zero
as N tends to infinity and since v(k + 1) > 0, implies
for large NV,

IC(q,Cn) — IC(k,CN) <0 as..  (3.6)

case Il ¢ < k IC(q,CN) — IC(k,Cn)
= Ag+1) — Ak+1) + (7 — k)fN
= (g k)Cn +0 (et )*.

Therefore
(IC(q,Cn) — IC(k,CN)

Cn

1
2
loglogN) ‘ 3.7)

1
=(q—k)+b—;0( N

Now by the properties of C, the second term on the
right hand side goes to zero. Since Cn > 0, therefore
for large N

IC(q,Cn) — IC(k,Cx) < 0 as. (3.8

for ¢ < k. Combining (3.6) and (3.8), we obtain (3.4)
and that proves the result.

4. PERFORMANCE ANALYSIS

In this section we obtain the bound for P{§ # q} at
least for large N. Note that

g-1 p—1
P{g#q}=) P{g=k}+ Y, P{g=k} (41)
k=0

=q-1

Consider two different cases:
CaseIfk<gq

P{d:k}
= P{IC(k,Cn) < IC(j,Cn)
for j=0,1,...,k-1Lk+1,...,p—1}
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P{IC(k,Cx) < IC(q,Cn)}
P{\k41) — Ag41) + (k= q)Cn < 0}
= P{A\g+1) = Ag+1) + (F—q)Cn
A1) = M) + Agrn) = Agan)}
P {’Y(k+1)

< (g KON + M@y = Aesn) +
Ma+1) = Mg }-

A

(4.2)

Since Cn tends to zero, (Agx41) — S\(k.,.l)) tends to zero,

(5\(“_1) — A(g+1)) tends to zero and 741y > 0, a.s.,
therefore for sufficiently large NV,

for k<gq.

Case IIIf k> g

P{G=k} = P{IC(k,Cn)<IC(jCn)
= for j=0,....k-1,k+1,...,p-1}
= P{Ag+1) = Mgy + (k= )Cn <0
for j=0,1,....,k-1,k+1,...,p—1}

Therefore, by the same argument as (4.3), we can say
that for large NV,

loglogN 3
P(q:k) = P{/\(j+1)—/\(k+1)+0( N )
> (k-J)Cn
for j=0,1,...,k-1k+1,...,p—1}

= P{:\(k+1) - 5‘(j+1) +(k—j)Cn <0
for j=¢,....,k—1,k+1,...,p—-1}
< P{A\g+1) — Ag41) > (k- ¢)Cn}

since A(j41) = A(k41) > 0 for j =0,1,...
large N

,q—1. So, for

p—1
Plg#qt~ Y, P(g=k).

k=q+1

(4.4)

Therefore, to compute (4. 4) we need to know the joint
distribution of /\(1), /\(p) We use matrix pertur-
bation technique to compute the joint distribution of
/\(1), /\(p) Observe that from the Central limit the-
orem, we can say;
VN(Vec(R) — Vec(R))

is asymptotically normal with mean vector 0 and cer-
tain p? x p? dispersion matrix I'. Here Vec(.) ofapx p
matrix is a p? x 1 vector obtained by stacking one col-
umn below another. Let’s write

R=R+(R-R)= R+eNR -R_ R+enBy, (4.5)

here ey = {loglogN/N}%, therefore for large N, 0 <
en < 1 and the elements of By’s are bounded almost
surely because of (3.2). Let A; be any particular eigen-
value of R and i be the corresponding perturbed eigen-
value of R. Suppose Z; is the normalized eigenvector
of R corresponding to A;, then from [26], we have

Xi =\ +enZEBNZ;. (4.6)
It is important to note that A; may be repeated eigen-
value, then Z; is not unique. Take any particular Z;,
still (4.6) is valid ([26]). Since the elements of By are
asymptotically normally distributed, therefore ZZ BN Z;

will also be asymptotically normally distributed. Clearly
E() =X fori=1,. ..,pas E(By) =0 and

E( = %) — X)) = X E(ZIBNZ:)(Z]BNZ,),
(4.7)
where Z; and Z; are two orthonormal elgenvectors cor-
responding to )\ and ;. Now

E(Zf'BNZ;)(Z]BNZ;)

1 . .
2 E[Zf Ry - R)Z;Z] (Ry - R)Z;)
1

ZFRZ;)(ZFRZ)). (4.8)

Ne 2 (
Note that the last equality of (4.8) follows from [4].
Therefore, from (4.8) it is clear that \; will be asymp-
totically normally distributed with mean A; and vari-
ance %;— for ¢ = 1,...,p. Asymptotically X and 5\]-
are independently distributed for ¢ # j. Note that
for large NV, the distribution of {A(g41),...,A(p)} is the
distribution of order statistics of (p — ¢) random ran-
dom sample from a normal distribution with mean o2
and variance g}v, Therefore, to compute the right hand
side of (4.4) we need to know the joint distribution of

{Aesny = Agap} for j=g...,p— 1.

It is well known that the exact distribution of the
difference of order statistics of normal distribution are
difficult to obtain. Although some well known approxi-
mations results are available. We use re-sampling tech-
nique similarly as [13] to estimate (4.4). The details
will be presented in the next section.

5. NUMERICAL EXPERIMENTS:

In this section we perform some numerical experi-
ments to present both the effectiveness of our method
and the usefulness of the analysis. All the computa-
tions are performed at the Pennsylvania State Univer-
sity using SUN workstation. We use the RAN2 uniform
random number generator of [18] and the singular value
decomposition by IMSL subroutine. The programs are




written in FORTRAN. It is available on request from
the author. We consider the following model.

p=5vq=2)¢l e 1'0,¢2 =20

The covariance matrix of the real and imaginary part
of x(t) is a 2 x 2 matrix as follows.

1.25 1.00
1.00 1.25

We consider N = 100. The real and imaginary part
of x(t) are taken to be independent. For the com-
parison purposes with the other known methods, we
consider the error random variables to be normally dis-
tributed with o = 0.75 (SNR =~ 3.01dB), o = 1.0 (SNR
~ .511dB) and ¢ = 1.125 (SNR = -.511dB).

We use twelve different Cp, all of them satisfying
(2.7), but converging to zero at different rates. We de-
fine them as P(1),..., P(12), they are as follows P(1) =

#)% PR =% PO =)

P(4) = (4)*, PB) = giw, PO) = ()

P) = (y) " PO = (k) > PO = (v )
1 .3

P(10) = (m&y) PO = (wrkw)

P(12) = (15w )-

Out of 1000 replications, the percentage of correct es-
timates (PCE), and the percentage of wrong estimates
(PWE) are obtained for different SNR. We also obtain
the theoretical values of the probabilities as follows. We
draw a sample of size (p — ¢) from a Gaussian random
variable with mean o2 and variance 91\—;- We order them

as :\(q+1)7 cee ,X(p) and check whether
Aks1) — A1) + (k= 5)Cn <0

for j =gq,...,k—1,k+1,...,p. We repeat the pro-
cess five thousand times and compute the percentage of
time it is true and that gives an estimate of (4.4). We
also calculate the percentage of under estimates from
the distributional properties of A(1),...,Aq). Adding
the probability of over estimate and the probability of
under estimate we obtain the probability of wrong es-
timate. Finally subtracting the probability of wrong
estimate from one we obtain the probability of correct
estimate. The results are reported in Table 1. The
quantity within the bracket indicates the theoretical es-
timate of the probability of correct estimate (PCE) and
the probability of wrong estimate (PWE).

At finite sample size the performance of the pro-
posed method very much depends on the penalty func-
tion used, although all of them give consistent estimates
as the sample size tends to infinity. From Table 1 it is
clear that the performances of all the methods becomes
worse at low SNR which is not very surprising. It is

important to observe that the theoretical probabilities
match quite well in almost all the cases considered and

the estimates are better in most of the cases at high
SNR.

Table 1

o=.75
P(k) PCE PWE
P(1) | 1.00 (1.00) | 0.00 (0.00)
P(2) | 0.95 (1.00) | 0.05 (0.00)
P(3) | 0.56 (0.74) | 0.44 (0.26)

P(4) | 0.12 (0.23) | 0.88 (0.77)
P(5) | 0.38 (0.56) | 0.62 (0.44)
P(6) | 1.00 (1.00) | 0.00 (0.00)
P(7) | 0.99 (1.00) | 0.01 (0.00)
P(8) | 0.96 (1.00) | 0.04 (0.00)
P(9) | 0.77 (0.89) | 0.23 (0.11)
P(10) | 1.00 (1.00) | 0.00 (0.00)
P(11) | 0.12 (0.23) | 0.88 (0.77)
P(12) | 1.00 (1.00) | 0.00 (0.00)

o= 1.00

PCE | PWE
P(1) | 0.92 (0.98) | 0.08 (0.02)
P(2) | 0.42 (0.61) | 0.58 (0.39)
P(3) | 0.07 (0.21) | 0.93 (0.79)
P(4) | 0.00 (0.11) | 1.00 (0.89)
P(5) | 0.03 (0.19) | 0.97 (0.81)
P(6) | 0.97 (1.00) | 0.03 (0.00)
P(7) | 0.81 (0.96) | 0.19 (0.04)
P(8) | 0.42 (0.60) | 0.58 (0.40)
P(9) | 0.15 (0.29) | 0.85 (0.71)

)

)

)

P(10) | 0.80 (0.96) | 0.20 (0.04
P(11) | 0.00 (0.14) | 1.00 (0.86
P(12) | 0.93 (0.99) | 0.07 (0.01

o = 1.125
PCE | PWE

P(1) | 0.72 (0.88) | 0.28 (0.12)
P(2) | 0.20 (0.43) | 0.80 (0.57)
P(3) | 0.01 (0.21) | 0.99 (0.79)
P(4) | 0.00 (0.19) | 1.00 (0.81)
P(5) | 0.00 (0.22) | 1.00 (0.78)
P(6) | 0.86 (0.96) | 0.14 (0.04)

P(7) | 0.53 (0.71) | 0.47 (0.29)
P(8) | 0.20 (0.41) | 0.80 (0.59)
P(9) | 0.04 (0.25) | 0.96 (0.75)
P(10) | 0.52 (0.70) | 0.48 (0.30)
P(11) | 0.00 (0.23) | 1.00 (0.77)
P(12) | 0.75 (0.91) | 0.25 (0.09)
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6. HOW TO CHOOSE THE PENALTY FUNC-
TION ?

Looking at the tables, it is clear that the theoreti-
cal bounds are quite close to the actual one. But un-
fortunately without knowing the actual parameters, we
can’t calculate the theoretical probabilities. Nobody, so
far did raise this question that how to estimate these
bounds. We estimate these probabilities with the help
of the given sample and using re-sampling technique.
We finally use them to choose the proper penalty func-
tion, which definitely depends on the model as well as
the given sample. From any particular realization of
the model, we compute the matrix R (see (2.2)) and
obtain the p eigenvalues and the corresponding eigen-
vectors. Now suppose using the penalty function P(k),
we estimate the order of the model as M}. Assuming
M, is the correct order model, we compute the esti-
mate of 02, by averaging the last p — M}, eigenvalues,
say 2. We estimate (4.4), the probability of over es-
timate, assuming 62 is the true value of o2, My is the
correct order model and using the re-sampling (simu-
lation) technique as described in the previous section
by generating B normal random sample of size p — Mj.
Similarly assuming A(1),...,A(a,) are the true values
of Aqa),.--»A(mM,)» Mk is the correct order model and
using the asymptotic distribution of :\(1), ceey 5\( My)) 88
obtained in section 4, we estimate the probability of
under estimate. Therefore, adding the two we obtain
an estimate of the probability of wrong detection. It
can be shown easily that for large N, the estimate of
probability of wrong detection under the assumptions
of correct order model will be less than the estimate of
wrong detection under the assumption of lower/ higher
order model, because the former one goes to zero as
N tends to infinity where as the later one goes to a
positive quantity.

We use this idea and compute the estimate of the
probability of wrong detection for all the criteria and
choose that one which gives the lowest estimate of prob-
ability of wrong detection. We use the same model, and
the same set of penalty functions and in each trial we
choose that penalty function that gives the lowest es-
timate of probability of wrong detection. In each case
we draw one hundred random sample (B = 100) to
compute the probability of error and replicate it over
one thousand trials. The result is reported in Table
2, which indicates the percentage of correct estimate
(PCE) and the percentage of wrong estimate (PWE)
over one thousand replications.

Table 2

o PCE | PWE
0.75 | 1.000 | 0.000
1.00 | 0.920 | 0.080

1.125 | 0.770 | 0.230

It is observed from Table 2 that the proposed method
works quite well. As the SNR increases the performance
of the proposed method improves, it verifies the consis-
tency property of the proposed method. If the SNR
is high (= 3dB) then the proposed method can detect
all the times the correct order model. As the SNR de-
creases the performance becomes bad. Even then at
low SNR (= -.5dB) the proposed method can detect
more than 75 % of the time the correct order model.

7. IF THE ERROR IS GAUSSIAN:

So far we did not use any distributional assump-
tions on the error random variables of the model ex-
cept (1.3). Zhao, Krishnaiah and Bai [28] or Wax and
Kailath [23] used AIC, MDL or EDC type criteria if
the errors are known to be Gaussian. If we know that
the errors are Gaussian, we should use that information
and that should yield better results. We recommend to
use the modified EDC as follows. Suppose

I(k,Dn) = —logL + Dn{k(2p — k) +1},  (7.1)

here

T2 A
« \N(p—Fk)
(7 o)

and Dy satisfies the following conditions:

. Dn _ . Dy
(a) IJE)noo N 0 () 1\}E>noo loglogN ~— ®©

Ly =

(7.2)

Let
G = argminI(k,Dy),

then § is an estimate of g. Zhao, Krishnaiah and Bai
[28] proved that § is a consistent estimator of g. Note
that

Plg#ql=1-Pl§=4),
where
Pl =q]
= P[I(g,Dn)-I(k,Dy) <0, for k=0,...,q—1,q+
1,...,p-1].

(7.3)
Since (7.3) depends on the distribution of 5\1,...,;\,,,
using the asymptotic distribution of Ay,..., :\p, we can

estimate (7.3) exactly as before by using the re-sampling
technique. From a class of Dy, we can estimate (7.3)
for each penalty function Dy and choose that Dy which




gives the smallest estimated probability of wrong detec-
tion. We use the same model of Section 5, and use the
following Dy, defined as D(1),...,D(12) satisfy (7.2)
(except D(4) = 1, which gives AIC). They are
D(1)=N1,D(2)=N"5,D3)=N"*,

D(4) = 1, D(5) = Llog(N), D(6) = (log(N))",

D(7) = (log(N))®, D(8) = (log(N))*,

D(9) = (Nlog(N)) 1,

D(10) = (Nlog(N))?,

D(11) = (Nlog(N))°, D(12) = -i,—log(N).

Out of one thousand replications, the percentage of
correct estimates and the percentage of wrong estimates
are reported in Table 3.

Table 3

o=.75

Method | PCE | PWE
New | 0.999 | 0.001
AIC 0.884 | 0.116
BIC 0.999 | 0.001
EDC | 0.927 | 0.073

o = 1.00

Method | PCE | PWE
New | 0.990 | 0.010
AIC 0.887 | 0.113
BIC 0.982 | 0.018
EDC | 0.929 | 0.071

o = 1.125

Method | PCE | PWE
New 0.973 | 0.027
AIC 0.890 | 0.110
BIC 0.864 | 0.136
EDC 0.928 | 0.072

From the results of Table 3, it is very clear that the
performances of BIC, EDC and modified EDC improve
as the SNR increases. It again verifies the consistency
properties of the three methods. On the other hand the
inconsistency of the AIC also verifies from the results
of Table 3. The performance of BIC is generally better
than AIC or EDC if the SNR is moderate (¢ = 1.00)
or high (¢ = .75) but the performance of BIC becomes
quite bad compared to AIC or EDC at low SNR (¢
= 1.25). The same phenomena were observed in [11]
also. Now comparing the modified EDC with the rest
it is clear that the modified EDC performs much better
than the other known methods at all SNR. It may not
be very surprising, because AIC, BIC and EDC use
data independent penalty functions. On the other hand
the modified EDC use data dependent penalty function.
It uses that penalty function, which is in some sense

optimal for that given data set within that given class
of penalty functions.

8. CONCLUSIONS:

In this paper we consider the direction of arrival
model and propose a new method to estimate the num-
ber of signals. We do not need any distributional as-
sumptions on the error random variables, except the
finiteness of the second order moment. It is well known
that if the error are Gaussian, then we can use the
AIC, MDL or EDC to estimate the number of signals.
We propose a modified criteria, if it is known that the
errors are Gaussian. It is observed that our proposed
method works better than the usual AIC, MDL or EDC
in many situations. It may be mentioned that the pro-
posed method may be difficult for online implementa-
tion. More work is needed in that direction.
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